#D-A134 537 A THREE-STEF FROCEDURE FOR LANGUAGE GENERATION(U) 1/1 - \
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
- INTELLIGENCE LAB B KATZ DEC 88 AI-M-599
UNCLASSIFIED N@8@14-88-C-8585 F/G 5/7 NL

=2 s
"“ __|_0 = 12 ‘2.2 !
e

EE

="y

IL2s flis pee

Irrr

r
rr

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS.1963-A

4
«
|
A . - A_L‘A._LAA_.._.._.-A_‘-:--_-;-AA:-:-\J

e A iR e b P oata?aliml el

T——

ADA13153%7

DTIC FILE COPY

\

o Jer s e Mo i e e Shet ioc it ubc e st Iaduienc st hutt Jant suf e Setu bt A G L SR

UNCLASSIFIED
SECURITY CLASSIFICATION OF TS PAGE (When Date Entered)
READ INSTRUCTIONS

[T REPGRT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AIM 599

4. TITLE (and Subtitle) : $. TYPE OF REPORT & PERIOD COVERED
A Three-Step Procedure for Languaae Generation Memorandum

S. PEAFORMING ORG. REPORT NUMBER

I7- auTwoR(e) 8. CONTRACY ON GRANT NUMBER(a)
Boris Katz N00014 -80-C-0505

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. FROGRA'T-LEMENT. PROJECT, TASK
Artificial Intelligence Ltaboratory AREA & WORK UNIT NUMBERS
545 Technology Square
Cambridge, Massachusetts 02139

1. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
Advanced Research Projects Agency December 1980
1400 Wilson Blvd 13. NUMBER OF PAGES
Arlington, Virginia 22209 40

'8 MONITORING AGENCY NAME & ADDRESS/il dilferent from Controlling Otlice) 1B. SECURITY CLASS. (of thie report,
Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, Virginia 22217 T5a DECL ASSIFICATION/COWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, I different from Report)

18. SUPPLEMENTARY NOTES

None

.
—

19. KEY WORDS (Continue on reverse side il necessary and identily by block number)

Language Generation 3

Parsing L >
Transformations

Natural Language

- ABSTRACT (Continue on reverse eide If necessary and identity by block number) . R
~\This paper outlines a three-step plan for generating English text from any

semantic representation by applying a set of syntactic transformations to a
collection of kernel sentences. The paper focuses on describing a program
which realizes the third step of this plan. Step One separates the given
representation into groups and generates from each group a set of kernel
sentences. Step Tow must decide, based upon both syntactic and thematic
considerations, the set of tranformations that should be performed upon each
set of kernels. The output of the first two steps provides the YTASK® for -

U SO LT WU WA R AT S WA G PN W W PR G TUT U WY V0 WA SORT G GOy Wi VA VU Vo Wy Wy S St vy G v

DD ";2:"” 1473 eo0i1TiON OF 1 NOV 65 1S OBNSOLETE UNCLASSIFIED

S/N 0102-014- 4601 !

(™

SECURITY CLASSIFICATION OF THIS PAGE (When Dare Entered)

K
|
¥

20. Step Three, Each element of the TASK corresponds to the generation of one Enclish
sentence, and in turn may be defined as a triple consisting of: {iﬁ a list of kernei
phrase markers; ng a list of transformations to be performed upon the 1ist of kernels:
(£) a "syntactic separator" to separate or connect generated snetences. Steo Three takes
as input the results of Step One and Step Two. The program which implements Sten Three
"reads" the TASK, executes the transformations indicated there, combines the altered
kernels of each set into a sentence, performs a pronominalization process, and finally
produces the appropriate English word string. This approach subdivides a hard problem
into three more manageable and relatively independent pieces =< It uses linguistically
motivated theories at Step Two and Step Three. As implemented so far, Step Three is
small and highly efficient. The system is flexible; all the transformations can be
applied in any order. The system is general; it can be adapted easily to many domains.

N ¥ RN

ISR B

R F SN POvararTrerarY ¥ W

PP NE W

(S S T B

o st 4 P

MASSACHUSETTS INSTITUTE OF TECHNOLOG)

ARTIFICIAL INTELLIGENCE LABORATORY

A.l.Memo No.599 December, 1980

A THREE-STEP PROCEDURE FOR LANGUAGE GENERATION

Boris Katz

ABSTRACT: This paper outlines a three-step plan for generating English text from any scmantic
representation by applying a set of syntactic transformations to a collection of kern 2l sentences. The paper
focuses on describing a program which realizes the third step of this plan. Siep due separates the given
r2presentation into groups and generates from each group a set of kernel sentences. Step I'wo must decide,
bascd upon both syntactic and thematic considerations, the sct of transformations that should be performed
upon cach set of kernels. "FPhe output of the first two steps provides the "TASK”™ for Step ‘Three. Fach
c:ement of the TASK corresponds to the generation of one English sentence, and in turn may be defined as a
tiiple consisting of: (a) a list of kernel phrase markers; (b) a list of transtormations to be performed upon the
list of kernels; (¢) a “syntactic separator” to separate or connect generated sentences. Step Three takes as
input the results of Step One and Step two. ‘The program which implements Step ‘Three "reads” the TASK,
exceutes the transformations indicated there. combines the altered kernels of cach set into a sentence,
performs a pronominalization process, and finally produces the appropriatc English word string. This
approach subdivides a hard problem into three more manageable and relatively independent pieces. 1t nses
linguistically motivated theories at Step Two and Step Three. As implemented so tar, Step Three is small
and highly cfficicnt. The system is flexible; all the transformations can be applicd in any order, ‘The system
is general; it can be adapted casily to many domains. Below is an actual example of English text generated
by the program from the kernels and transformations of an appropriate input TASK:

"At the beginning of the story Lady Macbeth is bothered by the fact that Macbeth is not the king. Macbeth who was
a nobleman is persuaded by her to murder the king with a knife because she wants Macbeth 1o be the king. She dics and
Macbeth becomes unhappy. Macduff didn't see Macbeth murder the king. In the end Macbeth is killed by Macduff who
was a good friend of the king. Were there some other stories written by Shakespeare?”

‘This rescarch was donc at the Artificial Intelligence Laboratory of the Massachusctts Institute of 'Technology.
Support for the Laboratory’s artificial intelligence rescarch is provided in part by the Advanced Rescarch

Projects Agency of the Department of Defense under Office of Naval Rescarch contract NOOQ14-80-C-0505.
© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1980

-~/

2 08 16 ° 120

S

,4_‘!1L'L_,

ot B N T s oW . « e . - .. il i Rl Chind Bt Bt S BH L M S 3 IR N
AN bt IR B MACRCR A I A A A0 A M AR A AN B A AN S S S e AAURICINELIAS RCaS N

. y
-

N

-4

- . Katz -2- Introduction
iy [

A

- -

% §0. Introduction

2 Suppose that a computer contains a semantic representation of a certain seque e of events or facts.
o For many reasons, it is useful to generate English text from such a representation. This paper
outlines a three-step plan for generating English text from any semantic representation by applying
T a set of syntactic transformations to a ccllection of kernel sentences or phrase markers.! The paper
. { ycuses on describing a program called (GEN which realizes the third step of this plan.

fl:ﬁ Step One of the Language Generation Procedure (LGP) separates the given semantic
'{Z; representation into groups and generates from each group a set of kernel phrase markers. A phrase
o marker can be used in one of several syntactic roles: a matrix clausc Ky an embedded clause K . or
J a relative clause K. The role of a given phrase marker must be specificd in Step One.

N

Step Two of the LGP must decide, based upon both syntactic and thematic considerations, the set
of transformations that should be performed upon each set of kernels.

The output of the first two steps provides the input for Step Three. We will sometimes refer to this
o input as the "TASK" for Step Three. Each element of the TASK corresponds to the generation of
one English sentence, and in turn may be defined as a triple consisting of:

(a) a list of kernel phrase markers generated by Step One;
'.'} (b) a list of transformations, obtained from Step Two, to be performed upon the list of
e kernels;

= (c) a "syntactic separator” (punctuation mark, conjunction, etc.) to separate or connect
a8 gencrated sentences.

o Step Three takes as input the results of Step One and Step Two. The program GEN which -
implements Step Three of the generator "reads” the TASK, executes the transformations specified :
! . there. combines the altcred kernels of each set into a sentence, performs a pronominalization
'.j;‘ process, and finally produces the appropriate English word string.?

‘ 1. The definition and the structure of kernel phrase markers (Semantic Frame Structure) is described in Section 1.
;,'.‘_ < 2. A comprchensive review of previous approaches (o language generation can be found in [McDonald 1980}

..........

o oA S aull et Geus Sn dide i Nach landh i st et At Muh it S
Mt e RN MAAA Y

atz -3- Introduction
For cxample, given the following kernels:?
K, = a young woman asked it (D
K, = this man ate the cake

1

ana &

the program can apply different sets of transformations for altering the individual sentences or

combining them. Among the possible outputs are:*

[. After O-NP]-'I'OX:

2. After

3. After

4. After

5. After

QUESTION:
NOTI:

PASSIVE:

NT:

A young woman asked this man to cat the cake.

Did a young woman ask this man to cat the cake?

Did a young woman ask this man not to cat the cake? (2)

Was this man asked by a young woman not to cat the cake?

Wasn't this man asked by a young woman not to cat the cake?

Suppose that the program GEN takes as input the following TASK:
TASK1 = ((K0 Kl) (O-npl-tol Question) (7))

According to this TASK, the program applies the transformation 0-np,-to to the embedded clause
K . and the transformation Question to the matrix clause Ko. Then the altered kernels are combined
and the resulting output is: "Did a young woman ask this man to eat the cake?" which is sentence
#2in (2). If, for instance, we want (0 obtain sentence #5 from the sct (2) above, the input TASK
should be:

TASK2 = ((K, K)) (0-np,-to, Question Not, Passive N't) (1))

The last step of the Language Generation Procedure uses three different classes of syntactic
opcerations to "solve” the TASK provided by Step One and Step Two: the system of optional
commutative Transformations. the set of Transformational Filters whose application is obligatory
only if certain conditions arc met, and the sct of intrinsically ordered, obligatory Adjustments.

3. The word jt is uscd here as a joining point.

4. For convenience, we append 17 to the name of a transformation which will be applied to an embeddced clause. and
2" to a transformation that will be applied 10 a relative clause. Nothing is appended to the matrix clause. ‘The
significunce of the names of transformations, such as 0-NP,- 1O, will be explained below in Section 6.

PP Sl G SR U W I S LS VI ST WA A S a fala S ie oaom 2

!

L‘_.-J.‘M‘J_—‘_‘.;‘_{A‘““‘LLJ A4 3 4 semm smes PP S =Y

A3Aca 8 :ras

Introduction

Below is an actual example of English iext generated by the program GEN from the kernels and
transformations of an appropriate input TASK:?

An old professor wanted 1 large English class to lcarn a story about
Macbeth. He didn’t notice a young man and a young lady cating a huge
cake under the desk. They were in danger. weren’t they? Tortunately the
people who loved the story i-bout Macbeth did not see them cither. Hear it
now! At the beginning of t1e story Lady Macbeth is bothered by the fact
that Macbeth is not the king. Macbeth who was a nobleman is persuaded
by her to murder the King with a knife because she wants Nacbeth 10 be
the king. She dies and Macbeth becomes unhappy. Macduff didn't see
Macbeth murder the king. In the end Macbeth is killed by Macduff who
was a good friend of the kiig. Were there some other stories written by
Shakespeare? ®

‘The pronouns found in this example wee not present in the input TASK. but were created by the
program.’

Among the advantages of this approach are:

- it nicely subdivides a hard protlem into three more manageable pieces, such that each is
relatively independent of the others

- it uses linguistically motivated theories at Step Two and Step Three of the LGP

- as implemented so far, Step Three is small and highly efficient

- the system is flexible; all the transformations can be applied in any order

- the system is very general: it can be adapted casily to many domains.

5. The following fragments show the structure of the TASK:

(Ky=An old professor wanted it; K, =A large English class learns a story about Macbeth) (0-npl-lol) ()
(Ky= Macduff saw it; K, =Mucbeth murdered the king) (Nt 0-np,-inf)))
(Ky=In the end Macduff kills Macbeth: K, =Macduff was a good friend of the king) (Relau‘ve2 Passive) ()
(K, = Shakespeare wrole some other stories) (Question Passive There) (7)

6. The author apologizes for possible historical inaccuracy in the computer output.
7. The pronominalization procedure is described in the Appendix 1.

paies Mt Jatt Tty dndt 2 gy J

1
]
|
]

L Ak Al A
" o
PR
ottt

ey
e
o 80,

0.

et

| 4

Sementic Friame Structure

§1. Semantic Frame Structure

We will assume that the input scmantic representation consists of a set of frames.t Step One of the
Fanguage Generation Procedure builds from the given representation a set ol zernel phrase markers
using three types of templates (noun-template, verb-template. adverb-template) and two operations
(concatenation and conjunction) that assemble them. The structure of the templates is shown
below:

noun-template (NT) = (prcp* det” adj‘ noun)
verb-template (VT) = (tense aurl aux2 aux3 verb)
adverb-template (AT) = (mod adverb)

Here prep, det, adj. aux, mod are, respectively, abbreviations for preposition. dcterminer, adjective,
auxiliary and modifier. The superscript * indicates that a string of one or more symbols or their
conjunction is allowed. Tense also carries the grammatical features of NP, -- its number, person,
and gender.

Each template is implemented as a list of pairs, an association list. The first clement of the pair is
the name of the constituent, the second is its value. All constitucnts are optional. If any constituent
is absent, its value in the template is nil.

Given below are some sample templates:

NT = ((prep nil) (det a) (adj (young pretty)) (noun lady)) “a young pretty lady"
NT = ((prep with) (dct (all the)) (adj nice) (noun hooks))
NT = ((prep (from out of)) (det the) (adj nil) (noun darkness)) "from out of the darkness”

"with al} the nice books”

VT = ((tensc past) (aux1 can) (aux2 have) (aux3 nil) (verb notice)) "could have noticed”

AT = ((mod very) (adverb well)) "very well”

The following two operations are allowed:

8. The term “frame” was introduced in [Minsky 1975]. The Frame Representation Language (FRL) developed in
[Roberts and Goldstein 1977) can be used as an example of such representation. In this paper, however, for festing
purposes we will consider a set of kernel phrases as the input. A parser has been designed and implemented in order to
process the kernel phrases. The description of the parser can be found in the Appendix 2.

T

e

. "E’ MRS R 0 A

Semantie Frame Structure

1. Concatenation: CONC (X1 X2) ----> X1 X2

2. Conjunction: CONJ (X1 X2) > X1 conj X2
where X1 and X2 are two templates of the same type. and conj is a conjunction such as. and, or. cic.
The structure of the frames can be defined in terms of the templates and operations. as lollows:

Noun-frame (NF) is any appropriate’ sequence of applications of the operations CONC and
CONIJ applied to the noun-template NT,

Verb-frame (VF) and adverb-frame (AF) are defined in the same manner, as a sequence of
applications of CONC and CONJ applied to VT and AT, respectively.'®

The noun-frame will be called prepesitionless if it does not begin with a preposition.
For example:

NI = ((prep nil) (det nil) (adj nil) (noun Ivan) (conj and)
(prep nil) (det nil) (adj nil) (noun Maria)) = "lvan and Maria".

Each of the prepositionless noun-frames in a sentence has a particular semantic role associated with
it: agent, goal, or theme.

Agent is a thing that causcs the action to occur.
Goal is the recipient or the beneficiary of the action.
Theme is a thing that undergoes a state of change.

As an example, in the sentence "Ivan gave Maria all his money"”, Ivan is the agent who causes the

action to happen; Maria is the goal, as the bencficiary of his action: and all his money is the theme
that transfers from Ivan to Maria.

To construct a kernel phrase marker we have to put together a subset of the following set of frames:
NFinilial’ NFagcnl, NFgoal. NFlhcmt" NFﬁnal’ AFinili:\l’ AFmvdinl‘ AFﬁ"al, VF (3)

Here NF® NF*¥ and NF"™ are noun frames that play, respectively, the roles of agent, goal,

9. The present paper will not discuss restrictions on the usage of these two operations. This issue properly belongs to
Step One of the Language Generation Proccdure.

10. In the implementation we have assuried that the verb-frame VF = tensc aux] aux2 aux3 verb.

. S

-

. . P
P G R W)

Katz -7- Semantic Frame Structure

or theme in a sentence:' NF" 8 and NF™ are noun frames that will be transformed later into

I;nluh;ll

the inn ' and final prepositional phrases; AF™™ A cand AF™ gre adverb frames that will

be transformed into adverbs in initial, imedial, and final positions. All these elements are optional.

In the actual implementation kernel pl.rase markers have the structure of an association list. We
will call it a Semantic Frame Structure (SFS). The English word string corresponding to the

Semantic Frame Structure ol a kernel phirase marker we will call a kernel sentence.

For instance. the Semantic Frame Structure for the kernel sentence "Yesterday the young man

bought Maria a beautiful present” is:

((AF™ (mod nil) (adverb yesterday)))

(NF®E ((prep nil) (det the) (adj young) (noun man)))

(VF ((tense past) (auxl nil) (aux2 nil) (aux3 nil) (verb buy)))
(NF*" ((prep nil) (det nil) (adj nil) (noun Maria)))

(NF™™ ((prep nil) (det a) (adj beautiful) (noun present))))

A set of such Frame Structures together with a set of transformations to be performed upon them is
t1e input to the program GEN. The program docs not require any order of constituents in the SES,
but the following phrase structure rules are assumed for kernel sentences:!?

- KF —> SF VF CF

N

N SF ---> Nquml N-ugent (4)
: CF --» NFgoal NFlhcme NFﬁnal

where KF stands for kernel frame, SF - subject frame, VF - verb frame, CF - complement frame.
Given these phrase structure rules, the general form of a kernel phrase marker is:
NFinilial NFugcnl VF Nanal NFlhcme NFﬁnal (5)

As an example, here is the Semantic Frame Structure for the sentence "that young man with black
eyes could have been teaching our class in Boston™:

1. In Section 7 we will describe how the semantic roles associated with the noun-frames are used to define the
transformation Dative Movement and its interaction with Passive.

12. Adverb frames AE™ AR ng AR have been, for simplicity, 1t out of the phrase stiucwire rules.

B P T N S I T . T . e L L I T S T e |

" LRSI Sy Ty L. T.w Ve W% C Y

K1V -8- Sem ntic Frame Structure

((NF = ((prep nil) (det that) (adj young) (noun man)
(prep with) (det nil) (adj black) (noun eyes)))

(VF ((tense past) (auxl can) (aux2 have) (aur3 be) (verb teach))) (6)
(NF" 2 ((prep nil) (det our) (adj nil) (noun class)))

(NF™ ((prep in) (det nil) (adj nil) (noun Boston))))

32, Transformational Structure

I'he Semantic Frame Structure provides a semantic description of a kernel sentence which includes
constituents such as NF®™ NF*', and NF""™_ Because these semantic coastituents represent in
some sense a part of the underlying "meaning” of the sentence, their values do not change after
applying transformations. However, the SFS does not give a syntactic representation complete
¢nough 1o allow transformations to be directly appliecd. We must first construct an augmented

representation from the Semantic Frame Structure, the Transformational Structure (TS), which
gives a structural encoding of the information in the sentence. This structure will serve as the
domain of application for all transforirations. The Transformational Structuce consists of syntactic
constituents such as noun phrases (NP), prepositional phrases (PP), auxiliary system, several dummy
clements, etc. The process of building the Transformational Structure from the Semantic f-rame

Structure is described as follows:

(a) The noun phrases and the prepositional phrases of the TS are derived from the noun frames of
the SFS. Each noun phrase indicates a certain fixed position in the Transformational Structure:
NP -position. NP, -position. or NPz-position.” Each noun phrase is associated with one of the
prepositionless noun frames NF®™ NFE or NF"™™ in the Semantic Frame Structure and
derives its value from the noun frame. The valuc of a noun phrase is a "two-tuple™; it consists of a
semantic value, which is taken from the name of the noun frame and which indicates the role that
the noun phrase plays in the sentence: agent, geal, or theme, and a lexical value, which is the actual
word string in the noun phrase. Transformations (for cxample. Passive or Dative Movemenf) may
interchange the values of noun phrases; therefore, after such a transformation has been applied, the

affected noun phrase receives not only the new word string as its lexical value, but also the new

13. Later on by a reference to a noun phrase NP, NP, (. or NP,, we will mean the noun phrase which is located in the
corresponding position in the Transformational Structure. For instance, reference to NP, calls for a noun phrase in the
NP, -position in the TS.

SRS A SRd Riat AndiTiaft S

- ‘;.‘,‘1 LRSS

PP PYPIIY b -PTRTUvVEr L'.A_L‘m

g . 4

o

e N e S A" e S i R LA ac e 2 i e Aaad Soar g e Aete i R AR AT -,-_‘-‘

k.atz -9- { ranstormational Structure

semantic role as its semantic vatue. In Section 7 we will desceribe how this important feature is used

to deline the transformations of Dative Movement and Passive.

We will assume that the noun phrases NPl. NP .. and NP, initially obtain their values from the
frames NF=™ NP4 gnd NF™™ _ respectively. 1f only two noun frames NE™" and NpF*:
cre present in the input Semantic Frame Structure, the corresponding Transtormational Structure
vill have only two NP-positions: NP, and NP, If there is only one noun frame NF*" in the
SFS. there will be only one noun phrase NP, in the TS. The Semantic Frame Structure in the

N -.'.: cxample (6) will be transformed to:"*
[. (NP (That young man with black eyes))
‘ (TENSE past) (AUX1 can) (AUX2 have) (AUX3 be) (VERB teach) (72)

(NP, (our class)) (PP (in Boston)))

L (o) A special procedure, "affix stripping”, is accomplished on the auxiliary elements of the
¢] verb-framic to separate each auxiliary verb from its affix.!® The affixes of the auxiliaries Modal. BE,
- and HAVE are. respectively, 0, en, and jng. The notation reflects the fact that in an English
. sentence after a Modal comes an infinitive, after HAVE comes the past participle. and afier BE
comes the progressive form of the verb [Chomsky 1957]. If the sentcnce has ro auxiliary verbs in it,

the auxiliary do (without an affix) is inserted as a value of the AUX1. B

B ((NP, (That young man with black eyes))

s (TENSE past) (AUX1 can) (AFFIX1 0) (7b)
h (AUX2 have) (AFFIX2 en) (AUX3 be) (AFFIX3 ing) (VERB teach)

- (NP, (our class)) (PP™ (in Boston)))

2 e FTWF
DRI

Au (¢) Several dummy elements are inserted in the TS which are left unspecified” until the appropriate

transformation activates them and assigns the necessary values. Two elements NEGI and NEG2
that will be used in the contracted and full forms of English negative arc inserted after the first
auxiliary verb. COMP is inserted in the beginning of the structure and INFL - before the first

auxihary verb. These will be used in constructing different embedded clauses. Thus the Semantic

14, This is the reason for having the obscure indices 1, 1.5, and 2 for the noun phrases.

15. In these diagrams we do not show the semantic valuces of the noun phrases.
16. The inverse operation, Affix Hopping. which is performed after all the transformations have been applicd, attaches
every affix to the immediately following verb.

17 In the implementation the values of unspecified elements NEG1, NEG2, COMP, and INFL. are names of those ° }
clements. .

D I I L P PRI CRpE e mra o PP TN WS Y - - LD, S) DR . § ‘A_AA,_\J

KR o AANGMIN R T i g
o TN

Lt - 10 - Franstormatonal Structure

ramie Structure (6) has now been transformed into Transformational Structure (7¢) on which

triansformations can operate:

((COMP comp) (NP, (That youag man with black eyes))

(TENSE past) (INFL infl) (AUNT can) (NEGIT negl) (NEG2 neg?) (AFFINTE 0) - (T¢)
(AUX2 have) (AFFIN2 en) (A JN3 be) (AFEFINDY ing) (VERB teach)

(NP, (our class)) (PP (in Boston)))

The Transformational Structure of a kernel sentence is a flatr list structure which suggests a more
smple and flexible way to define and perform the transformations. On the other hand. the
s:nlence obtained after combining several kernel sentences is represented as an embedded list
structure (tree structure). This allows the application of the rransformational filters across the
kernels (see Section 6). and also permite an easier interface with the results of other rescarchers. for

example. sentence internal pronominali <ation (sce [1.asnik 1976], [Reinhart 1976). [Sidner 1979)).

§3. Transformations and Adjustments

I.et K be a surface word string that corresponds to the input Semai *ic Frame Structure. In Scction
- it has been described how the Semantic Frame Structure SEFS(K) is mapped into the
Transformationa! Structure TS(K). The Transformational Structure serves as the domain of
application for all Transformations listed in the input TASK. However, after all the transformations
have been applied. the resulting Transformation Structure TS*(K) cannot yet be the source for the
correct English word string. Additional "clean-up” operations on the Transformational Structure,
Adjustments, must be employed in order to obtain the grammatical output -- the altered kernel K*.

Let us consider this process in detail:

() The Scmantic Frame Structure of the kernel sentence K is mapped {M} into a Transformational
Structure TS(K).

(b) A sct of transformations {1} is applied. I?znch transformation operates on the ‘Fransformational
Structure, alters it and passes the altered structure to the next transformation.

(c) A sct of special “clean-up™ adjustiments {A} is activated in order to get the terminal English word

* *
string K . The adjustinents operate on the altered Transformational Structure TS (K).

The following diagram (8) illustrates this process:

SES(K) -oeereeee- > TS(K) -reeeed TST(K) oeeeeeeees > K (8)

C—

Sainid,

R T R P T S prrprm———

Kaltz -1 - Franstormations vs. Adjustments

Diagram (8) provides a way to define Vransformations and Adjustments which shows an interesting
and important distinction between them based on comparing the input hernel sentence K with the

. *
output word string K .
Definitions:

Assume that the set of transformations {T} is empty. A set of opcrations {A} on the

Transformational Structure TS(K) of an input kernel sentence K will be ca ted Adjusements it in
.) _ *

diagram (8) the following equality holds: K = K .

An operation T on the Transformational Structure TS(K) of an input kernel sentence K will be
called a Lransformation if in diagram (3) the following inequality holds: K # l\'*. In this paper we
will use the notation T(K) to refer to the English word string that correspon.ds 1o the result of the
action of the transformation T on TS(K).

According to these definitions, such operations as Passive, Question, There Insertion.'® ctc. are
T'ransformations because they alter the original sentence. For example. as the result of successive
application of these transformations the sentence "Ivan ate a carrot” will be transformed into
"A carrot was eaten by Ivan”, "Was a carrot eaten by Ivan” and then to "Was there a carrot caten
by Ivan." The transformations are part of a planning vocabulary, that is, cach of them must be
listed in the input TASK.

On the other hand, the obligatory operations like Affix Hopping, Do Deletion, N't Hopping, ctc.
together constitute the clean-up Adjustments™ of the Transformational Structure whose goal is to
obtain the : ~cessary English output after all the transformations have been applied. They never
appear in the input TASK. If the set of transformations {T} is empty, the original kernel sentence
K will not be altered.

Adjustments are meaning-preserving, purely syntactical operations on the Transformational
Structure. Transformations, on the contrary, can affect the meaning (or emphasis) of a kernel
sentence. In fact, the meaning of a sentence obtained after combining several kernels altered by
transformations is built with the help of these transformations. In that scnse, one can consider
Transformations as semantic (meaning-altering) operations on the Transformational Structure.

18. The description of these transformitions will be given in Section 7.
19. Section 5 exanmines the Adjustments and the Separation and Ordering Constraints imposcd upon theny.

Tt T

.4 T TS Ot

Ei

!

o
{

(~ EEREOCROOATR 3 B
' . o et - e . .
:

ittt SN I e SR S R T v T T Pudiieuniirouis Ul atus agh A~ S 2 SR 2 AT

k.atz -12- Conunutativity

§4. Commutativity
Definitions:

Domin of Definition (T) of a transformation T is the set of all sentences K such that 1K) is a

grammatical sentence. The fact that the sentence K belongs to the domain of detinition of the

tansformation T is expressed in the following way: K C (T).

‘Two transformations T, and T, are commutative with respect to a sct of kernel phrase markers R if
for each phrase marker K C R the following relations hold:

KCQ(TI), KC&Z(TZ). ’l‘l(K)C82(’l‘2). 'l‘z(K)CIZ('l‘]\)
and
T(TK) = T(T (K)) (10)

I other words. the transformations T1 and T2 are commutative if the equahty (10) holds for the

corresponding domains of definition of T and T,

As an example, let us consider again the sentence K = "lvan ate a carrol.” The commutativity of
11e transformations Tp = Passive and TQ = Question can be checked for thi. sentence because all
the four outputs are grammatical and TP(T Q(K)) = TQ(TP(K)). i.e. we have the following
commutative diagram (11):

Question

K = Ivanateacarrot = ----eeemeeeseees > 'I'Q(K) = Did Ivan eat a carrot
I I
I I
I I

Passive| | Passive an

| I
| |
} Question V

'I‘P(K) = A carrot was caten by Ivan -=----=-=seeeee > 'I‘P('I'Q(K)) = Was acarrot caten by Ivan

Considering another pair of transformations: T, = Passive and T, = There Insertion shows that
the commutativity of the transformations T, and T,, cannot be checked for the sentence K =
"Ivan ate a carrot.” The transformations can be applicd in the order: 1. Passive, 2. There Insertion,

resulting in:

PO

E

BAFETIVEY e

N - SO

i e A et ol R et et S aat Bt Rrdd 2 MDAt SnAl el JBel S deay a- > S M e ot o M 2l b e it S e g 2ote ben B andane e

Katz -13- Commutativity

'I‘P(K) = A carrot was eaten by lvan.
T, (T(K)) = There was a carrot caten by Ivan.

But it is not possible to apply the transformations T, and T in the reverse order because the
sentence K does not contain the verb b, which is necessary for There Insertion 1o work. “This does
not mean, however, that the two transfc rmations: Passive and There Insertion arc not. or cannot be
made. commutative. The previous example does not contradict our definition of commutativity
because the sentence K in this example does not belong to the domain of definition of the There

1i+sertion transformation.

A similar problem arises with the sentence: K = "A boy was eating the cake.” Fere it is possible to
aoply either T, = Passive:
T(K) = Thz cake was being eaten by a boy
or T, = There Insertion:
T, (K) = There was a boy cating the cake

But we cannot apply There Insertion after Passive, nor can we apply Passive after There Insertion. In
both cases the result will be unacceptable?® because the noun phrase the cake is definite, but 7here
Insertion is restricted to sentences with an indefinite first noun phrase:

* There was the cake being caten by a boy

The following diagram (12) illustrates this example:

There Insertion

K = A boy was cating the cake ™~ =meemesercemeeeenees > 'l‘“(K) = There was a boy cating the cake
I I
I I
| I
Pussive | | Passive (12)
l I
I |
4 There Insertion {
'I'P(K) = The cuke was being caten by aboy -=--=----=-eeseeeeean > *There was the cake being caten by a boy

20. The asterisk * before a senitence indicates that the sentence is "unacceptable”, or ungrammatical.

Ehdascs

Fadit At Thall AN S Y et S et e “Eeii S el S A R ARath Sinth Sl Nl sals Danf-Naaiir b Shdh b i pd T YT W e T W WS Y W S m T e v .

itz - 14 - Commutativity

U |

Again. as in the previous example. the fact that we can apply both T, and T, 1o the sentence K. but
cannot apply T, 0 TAKY or T 10 T, (K). does not mean that there is no commutativity in the
system. It means only that in this case the sentence K is irrelevant to the question of commutativity
becuuse K does not satisfy the conditions (9) specified in the definition of commutativity; K does

not belong to the set of kernel phrase markers 8 with respect to which commu ativity was defined.

One of the requirements that we impose upon the system is the poscibility to apply the
transformations in any order (equality (10)). Once this is done. the domain membership (conditions
(9)) becomes crucial: all the sentences obtained at cach step of the transformation derivation must

be grammatical. |

Definition;

’ N N transformations T, T, ... T are commutative with respect to a sct of kernd! phrase markers R if]
= for any i and j the two transformations T and 'l‘j are commutative with respect io the set ¥ and if for ;
'F-'s‘ any m < N the result of application of any composition of m different transformations ’I'X1 Ti2 w T {
- to a sentence K CN: Til(r*z (Tim(K))...) is a grammatical sentence.)]

In this paper we will build a system of Cemmutative Transformations that will permit us to "solve”
the TASK given by Step One and Step Two of the Language Generation Procedure and to generate !
corresponding English text. The commutativity of the system gives more flexibility to the first two
steps of the LGP. The decisions of how to separate the input semantic representation into groups of
kernel phrase markers and which of the transformations to apply will not depend on the order of
the transformations. It will be based only on the domain of decfinition of cach particular ?
transformation and on the meaning that this transformation adds to the meaning of the gencrated

sentence.

§5. Adjustments ’

This scction will examine the clcan-up Adjustments, operations which further alter the

Transformational Structure after all the transformations have been applied, in order to obtain the J
corrcect English output. We will start with an example. Consider the following kernel sentence !
K, = "Ivan was eating potztees.” The Transformational Structure TS(K)) for the kernel K is
shown in (13):

4

LYY LY W S PR S Y . P S T S T W U I T - I ~ 1

......

Katz -15- Adjustments

((COMP comp) (NP, (Ivan))

(TENSE past) (INFL infl) (AUX1 be) (NEGI negl) (NEG2 neg2) (AFFIXT ing) (13)
(AUX2 nil) (AFFIX2 nil) (AUX3 nil) (AFFIX3 nil) (VERB eat)

(NP, (potatoes)))

Supposc that the program GEN gets as input the following TASK:
TASK = ((K (Nt Question) (.))

Fere, Nt is the notation for the contracted form of the negative transformat'on. It simply inseits
nt, the contracted form of not, as the value of the element NEG1 of the TS.K). Question is the
name of the question transformation. This transformation takes the thre: clements: TENSE,
AUXI and NEG! in the Transformational Structure of a kernel sentence anrd moves them to the

front of the structure.

TS*(KO), the altered Transformation Structure of TS(KO) after undergoing these two
transformations, is shown below in (14):

((VENSE past) (AUX1 be) (NEG1 n’t) (COMP comp) (NP, (lvam))

(INFL infl) (NEG2 neg2) (AFFIX1 ing) (14)
(AUX2 nil) (AFFIX2 nil) (AUX3 nil) (AFFIX3 nil) (VERB eat)

(NP, (potatoes)))

Now that all the transformations have been applied to TS(K,) let us consider how certain
Adjustments work on the resulting Transformational Structure (14).

(a) Garbage Deletion removes all the clements in the TS which have been left unspecified at this
point. It also rejects all clements whose value is nil. The result is:

((TENSE past) (AUX1 be) (NEGI n't) (NP, (Ivam))
(AFFIX1 ing) (VERB cat) (NP, (potatoes)))

(b) Do Deletion dceletes the auxiliary do when it immediatcly precedes a verb. But the
Transformational Structure is designed in such a way that the auxiliary do is inserted in the 1S as a

value of the AUX1 only when the original kerel sentence does not contain any other auxiliary
verbs. There is no do in the Structure (14) since the auxiliary be is present, therefore the adjustment

Do Deletion is not applicable in this example,

(¢) Affix Hopping takes cvery affix that is immediately followed by a verb (including TENSE. which

PG I AR R > LU S P Y B Y bl e . Iy . P

e N e et e T WU S - M S i i S i G i e i e T M T
At R PR N - . D - * s

y— (Iw'v'vr".'-“'tv'-'j

katz -16 - Adjustments

I

as mentioned in Section 1 also carries the grammaticat features of NP) and attaches it to the verb so

IR R

that the affix becomes part of it:

((AUX1 was) (NFGI n’t) (NP, (Ivan))
(VERB eating) (NP, (potatocs)))

() Nt Hopping takes the clement NEGI of the Transformational Structure and attaches its value

n't 1o the immediately preceding auniliary verb.

((AUXT wasn’t) (NP, (Ivan)) (15)
(VERB eating) (NP, (potatoes}))

JL""'

Mow that all the adjustments have beer. performed. the word string composed of the values of all
the constituents of the Transformational Structure (15) produces the correct kernel sentence

* " . . "
K 0= Wasn't Ivan eating potatoes”:

I'hus. we have examined the following four Adjustments:®
1. Garbage Deletion

2. Do Deletion (16)
3. Affix Hopping

4. N't Hopping

We are going to show now that in order to build a system of Commutative transformations the
. . . 4
following two constraints must be imposed: |
1

1

Separation Constraint: Any adjustment in the list (16) should be exccuted only after all the

transformations from the TASK have been applied.

Ordering Constraint: The adjustments must be applied only in the order in which they are '{
listed in (16).)

First, in order to prove the necessity of the Separation Constraint we need to show that none of the
adjustments can be performed before a transformation. This can be shown by contradiction: we

S

will demonstrate for each of the adjustments in (16) that the violation of the Separation Constraint
prevents the application of certain transformations or leads to an infraction of commutativity.

21, In the implemented system there are a few other adjustments, but for simplicity we will not discuss them here,

. ., . . L.
NP . AP

oo e s 3 S BN . . - P a FEE A GRS WAL SR PRI T WP U S PR YR S WPy ol

Katz -17 - Adjustments

Finding one counterexample to every adjustment is sufficient for a proof because of the
Commutativity of the system. For clarity, we will consider the arguments in connection with cither
{ ‘ the kernel sentence "lvan ate the carrot” and its corresponding Transformational Structure (17);

((COMP comp) (NP, (Ivan))
(TENSE past) (INFL infl) (AUX1 do) (NEGI negl) (NEG2 ncg2) (VERB eat) (17)
(NP, (the carrot)))

or with the kernel sentence "Ivan was eeting the carrot” and its Transformational Structure (18):

((COMP comp) (NP, (Ivan))

(TENSE past) (INFL infl) (AUX1 be) (NEGI negl) (NEG2 neg2) (AFFIX]1 ing) (18)
(VERB ecat)

(NP, (the carrot)))

=+ gEEN)

PP A

1. Garbage Deletion cannot be performed before any transformation that uses the dummy elements
in the Transformational Structure; for instance. Negation, or any transformation that constructs
embedded clauses. This is because the clements required by such transformations would be deleted
by the Garbage Deletion adjustment before these transformations could have been applied.

2. Do Deletion cannot be performed before the Question transformation. If it were, the auxiliary

N verb do which is necessary for the construction of the correct output of the Question transformation,
. "Did lIvan eat the carrot”, will be prematurely delcted by the adjustment Do Deletion.

3. Affix Hopping cannot be performed before any transformation that inserts a new verb or a new
affix into the Transformational Structure. Suppose that the transformation Passive is to be applied
g to the Transformational Structure (18) of the kernel sentence "Ivan was eating the carrot.” Among

other cffects this transformation inserts the verb be with the affix en in front of the main verb cat

into the Transformational Structure (18) in order to obtain the past participle of the verb.”

SV

((COMP comp) (NP, (The carrot))

: (TENSE past) (INFL infl) (AUX1 be) (NEGI negl) (NEG2 neg2) (AFFIXI ing)]
(BE-PASS be) (EN-PASS en) (VERB eat) !
. (BY-PASS by) (NP, (Ivan)))

- If the adjustment Affix Hopping had been applied to the Transformational Structure (18) before the

& 22. The description of the Passive transformation can be found in Section 7.

RN . SN \ JDCINIM

LENgs Al e g DA Ml b U Sren G- A O pan Sy SN ipel ot Srum eee Douit et aais Boat sead IRt aeds Snth Dl s ans seecd uane sevas Sulk el aslian ST LSRNES JINE SHE STEE SN0 SE M
[N A N A It Tt - L. . . .

kKatz -18 - Adustiments

Passive transformation. the affix ing would "hop™ onto the wrong verb eat instead of the verb be.
The affiv gn. inserted afterwards by the Passive transformation, could not "hop™ on the verb cat. As
a result. the system would not be able to output the expected sentence "The carrot was being eaten

by lvan.”

4 1he adpustment Nt Hopping also cannot precede certain transformations. Lot us consider the
. - . . .‘ ~ " ' - - .
I ranstformational Structure 185 for the sentence "van ate the carrot” after the two transformations

(uestion and Nt have been applied:

((LENSE past) (AUXIL do) (NEG] n't) (COMP comp) (NPl (Ivan))
(INFL. infl) (NEG2 ncg2) (VERB eat)
(Nl’2 (the carrot)))

I the adjustment Nt Hopping is now applied before the transformation Pussive, the element n't will
be prematurely attached to the auniliary verb do. As a result, it will be impossible to execute the
transformation Pussive and transform the sentence "Didn’t lvan eat the cartot” into the sentence

Wasn't the carrot eaten by Ivan.”

We have shown that the adjustments are separated from the transformations. Now, to demonstrate
that the Ordering Constraint is nceded, we will again examine the sentence "Ivan ate the carrot” and
its Transformational Structure (17). We nced to show that the adjustments must necessarily be
ordered as stated in (16): 1. Garbage Deletion, 2. Do Deletion. 3. Affix Hopping, 4. N't Hopping.

1. Gurbage Deletion differs from the other three adjustments in (16) because it does not employ the
notion of adjacency required by all the other adjustments: Do Deletion deletes the auxiliary do
when it immediately precedes a verb; Affix Hopping attaches the affix to the verb immediately to its
right: N't Hopping attaches nt to the immediately preceding auxiliary verb.

Prior to the adjustment Garbage Deletion, the adjacency condition necessary for the application of
the other adjustments does not hold because of the presence of unspecified elements in the
Transformational Structure. Garbage Deletion should be executed first because it eliminates these
unspecified elements allowing the other adjustments to work. For example, Garbage Deletion
removes the unspecified elements NEG1 and NEG2 in the Transformational Structure shown
below, making it possible for Do Deletion to delete the auxiliary do since do and the main verb are

now adjacent:

- - A el i —in —— SO T S U U

1
f
1
-

il

bbb R b e adbndado bt R L

ey

b

[] .A'_L'L-LA_-.lm'g'u‘_Ll'l ;'-La PRI

Py e T N e i Ml Bal ek Sl Lni e s e
o DA A e Mt . - . CTe TR T R - . PR

katz -19- Adjustments

n ((NP| (Ivan))
(TENSLE past) (AUX1 do) (VERB eat)
(NP, (the carrot)))

It should also be noted that the adjustments Do Deletion, Affix Hopping. and Nt Hopping do not
introduce any dummy or unspecified elements in the TS which would otherwise have to be

removed by the Garbage Deletion.

2. Do Deletion must be performed before Affix Hopping. Otherwise, the value past of the TENSE
would "hop" onto the verb do instead of ear, and after executing all the adjustments on the
1 ransformational Structure (17) we would obtain the sentence "ivan did eat .he carrot™ instead of

"fvan ate the carrot."?

3. The adjustment Affix Hopping can1ot follow Nt Hopping. To show this suppose that the
transformation Nt has been applied to the Transformational Structure (17). After the Gurbage
Deletion adjustment the TS will have the following form:

((NP, (Ivan))
(TENSE past) (AUX1 do) (NEG1 n’t) (VERB eat) _
(NP2 (the carrot))) i

If now the adjustment N't Hopping is executed first. producing the new element don't, the Affix
Hopping adjustment will not be able to attach the TENSE to the element don’t. This observation
completes the proof of the Ordering Constraint. o

Thus two different classes of operations on the Transformational Structure have beein defined in
this paper so far: the optional commutative Transformations and thc obligatory, intrinsically

ordercd Adjustments. The Separation Constraint and the Ordering Constraint explain their mutual N
relations. ‘

§6. Connective Transformations N

-

In this scction we will examine the Connective Transformations, a particular class of English]
transformations which are uscd to construct sentences with Embedded Clauses. In order to form a

23, The sentence "Ivan did eat the carrot” is. of course, fully grammatical. It is the emphatic form of the sentence “fvan N
ate the carrol” used to stress a cerlain semantic message. In designing the system we decided not to allow such sentences C

so that all the adjustments would be obligatory. 3

et eaaaaiaa i aaa O S S S S U U I - . o
. a a—m & w a o

CJaN

's

A
P .

\a YTy
. ety L
. PP

n-v:-v.zv\-wv-‘v"v‘-v\-—-v_ﬁv'—--v-ﬁ_vv—-’

Lats -20- Connective | ranstormations

sentence of this type the system needs two kernel phrase markers as input: K, - which plays the role
of matrix clause and Kl - which is used as the basis for the embedded clause. The word it will be
used as a joining point. The kernel sentence K must contain the word i, in the role of cither agent

or theme. A Connective Transformation when applied 1o the kernel sentence K is said to produce
* . . ~ .

the altered kernel K in the form appropriate for an embedded clause. Other transformations

. . * . .

(if any) change the kernel K into Ko’ I'hen, a special procedure combines 1the two aliered kernel

. . * . . - . . . *
sentences by substituting the kernel K, for the joining point jtin the kernel K)
As an example of the procedure just de: cribed, consider the following kernel s2ntences:

K, = It bothers Maria (19)
K, = Ivan has ignored that letter

The embedded clause Kl has the Transformational Structure below:

((COMP comp) (NP1 (Ivan))
(FENSE present) (INFL infl) (AUX1 have) (NEGI negl) (NEG2 ncg2) (AFFIX1 en) (20)
(VERB ignore) (l‘\.'P2 (that letter)))

Now suppose that onc of the Connective Transformations, FOR-NP -TO,, is to be applicd. This
transformation produces a for-to-complement clause by inserting FOR and TO as the values of the
elements COMP and INFL, respectively, in the Transformational Structure (20). The result is:

((COMP For) (NPl (Ivan))
(FENSE present) (INFL to) (AUX1 have) (NEG1 negl) (NEG2 ncg2) (AFFIX1 ¢n)
(VERB ignore) (NP2 (that letter)))

*
Then the transformed kernel sentence K, = "For Ivan to have ignored that letter” is substituted
wre.

for the word i in the kernel K, = "It bothers Maria” producing the sentence: "l"or Ivan to have
ignored that letter bothers Maria” as the result.

The Connective Transformations form a family of transformations defined by three parameters,
each referring to a position in the Transformational Structure of the embedded clause: the
complementizer COMP, the first noun phrase NP and the complementizer INFL.

The parameter COMP indicates the affix which introduces the embedded clause. It can reccive one
of the following four values: {POSS, THAT, FOR, 0}. The affix POSS actually "hops" onto the
following noun during the Affix Hopping adjustinent to form a possessive noun phrase. THAT and

ADSER.S

b

T —————ye——_—

Connective | ranstormations)

R IOR are "independent” words and do not hop to the right like other affixes. 0 means that there is
no overt affix in this position. ‘

“"he parameter NP, takes on one of two values: {NP,. 0} indicating whether or not the first noun
phrase of the embedded clause is present in the resulting sentence.

"“he parameter INFL may also be considered an affix specifying how the verb in the embedded

i
i

lause should be inflected. It can have one of four values: {ING, INF, TO. 0}. Asin the case of
POSS. the value ING is the only "real” affix which hops onto the following verb producing the
j rogressive form. The value INF indicates that the following verb is in the infinitive form. TO is
n independent word which produces the TO + infinitive form of the verb. 0 signals that no aflix
is present, so the verb remains inflected for person. number and tense.

A particetar set of values for the three parameters COMP, NP, and INFL is sufficient to determine
tne form of the embedded clause completely (although not every possible triple produces a
grammatical English clause). Hence the commutative transformation which gencrates the
embedded clause is also uniquely determined. Therefore, we will usc the valucs of these three
parameters to form the names for the Connective Transformations. Fach name is represented as a
triple consisting of the current values of the parameters COMP, NP, and IN1. with the following
structure: COMP-NP -INFL. We have already seen some examples of such names: 0-NP -TO.
THAT-NP -0, FOR-NP -TO, etc.

The adjustment Affix Hopping dcletes the clement TENSE in the Transformational Str ture
unless the value of the parameter INFL is 0. Consequently, most of the Conuective
Transformations construct tenseless clauses. The exceptions are the transformations THAT-NP -0
and 0-NP-0. To give examples with tensed embedded clauses let us consider now another kernel
sentence for the matrix clause: K0 = "Maria knows it." After combining the altered kernels, the
program outputs the following sentences:

1. After 'l‘HAT-N!’l-Ol: Maria knows that Ivan has ignored that letter
2 After 0-NP-0;: Maria knows Ivan has ignored that letter

L The transformations THAT-NPl-O and O-NPI-O also differ from the transformations which
produce tenseless clauses in their treatment of negative clements in the Transformational Structure.

F.' A general description of the action of a Connective Transformation can be stated as follows:

(a) Current values of the parameters COMP and INFL from the name of the transformation

\at et
e
do e .

IR e S S i At dan et g Padary Lt et et avei suai A-EAal Bhslr s gn odi Raglh st v P ——— ——
RN . - Te L

Katz -22- Connective | ranstormations

are inserted in the Transformational Structure.
(b) If the value of the parameter NP, is 0. the clement NPl is removed from the Structure.
(c) If the value of INFL. is not 0. two negative elements, NEG1 and NEG2, are moved from

their usual position after the first auxiliary verb and placed in the front of TENSE. We will
call this phenomenon Neg Jump.

A

When the value of the parameter NP is 0. the first noun phrase in the matrix clause must be
coreferential with the first noun phrase in the embedded clause. As an example. consider the pair

of kernel sentences:

K0 = lvan wanted it

K

1

!

Ivan kissed Maria

VRV . 4 WOOTRINER XS A

Suppose that the transformation 0-0-TO applies. This transformation inserts the required values of
COMP and INFL into the Transformational Structure for the kernel sentence K, and deletes the

. TEIRRTEY

clement NPl in the Structure:

((COMP 0) (NPI 0) (NEG1 negl) (NEG2 neg2)
(TENSE past) (INFL to) (AUX1 do)
(VERB Kkiss) (NP, (Maria)))

After all the adjustments have been performed and the altered kernels have been combined the

program will output: "ivan wanted to kiss Maria.”

in the example above Neg Jump takes place only vacuously because the unspecified elements
NEG] and NEG2 are removed from the Transformational Structure. It is also difficult to sce this 1

R
phenomenon if the kernel sentence K| does not have any auxiliary verbs because after the Garbage -]
Deletion adjustment nothing will be left in the TS for NEG to jump over. This phenomenon can be
observed in a sentence in which the negative transformation Not also applies. The following TASK |
provides us with the appropriate examples: -j

TASK = ((K, K)) (That-np -0, Not, For-np-to, Poss-np -ing)) (.))

)

Here K and K, are the kernel sentences from (19):

= [t bothers Maria (19

K
0
K, = Ivan has ignored that letter

Neg Jump can be observed by comparing cither sentences #2 with #3 or sentences #. with #4

T 45 W

b
b

4

f

F

4

9

3

3

4

r

4

}

]
[Py

£

T ey vy v p—

batz -23- Connective Franstormations
in (21):
1. After 'I'HA'I'-NPI-OI: That Ivan has ignored that tetter bothers Maria
2. After NOTl: That Ivan has not ignorad that leter bothers Maria (h
Y After lf()R-NI’l-'I'O]: FFor lvan not to have ignored that letter bothers Maria

4. After I’OSS-NI’I-INGI: Ivan's pot having ignored that letter bothers Maria.

The system contains a family of ten different Connective Transformations used to construct
contences with various embedded clouses. An example of the application of cach of these
transformations is given in the table below:

TABLE]
Transtormation Matrix Clause I'mbedded Clause Sentence

THAT-NP -0 It bothers Maria Ivan ignored the letter That Ivan ignored the letter bothers Maria

FHA I’-Nl’]-lle Maria suggests it~ Ivan is silent Maria suggests that Ivan be silent

()-NPI-INF Maria watched it Ivan washed the dishes Maria watched Ivan wash the dishes
(_)-Nl’l-l) Maria knows it Ivan has ignored that letter Maria knows Ivan has ignored that letter
[FOR-NP,-TO It amuses Maria Ivan ignored the letter For Ivan to ignore the letter amuses Maria
()-NP]~'I’O Maria asked it Ivan atc the cake Maria asked Ivan to cat the cake

0-0-10 Ivan claims it Ivan has written that letter Ivan claims to have written that letter
POSS-NPl-ING It shocked Maria lvan ignored the letter Ivan's ignoring the letter shocked Maria
0-NP-ING Maria saw it Ivan ate the cake Maria saw Ivan cating the cake

0-0-ING It amuses Maria Maria watches movies Watching movies amuses Maria

The main verb of the matrix clause determines which clause may be embedded under it and,
therefore, the kind of Connective Transformation that may be applied in each particular case.
Consequentiy, any computer implementation of the Language Generation Procedure must contain

a list of permissible transformations for every verb that can appcar in a matrix clausc.

The system prevents the generation of the ill-formed sentences by employing transformational
Silters, a third class of operations on the Transformational Structure, which not only signal that a

certain combination of the transformations will result in an ungrammatical sentence, but also, if

P Y T T

T

La a2

e b

|

SO, JUn

. S

> d e

. .4

hatz -24 - Connective) ranstormations

possible. suggest additional rules in order o correct the output.”t Although this paper will not

consider such rules in detail. here are several illustrative examples:

(a) If the transformations 'I‘HAI"-NPI-OX and PASSIVE have been applicd to kernel sentences K,
and K, from (19). the resulting sentence obtained after combining the altered kernels is il-formed:
* "Maria is bothered by that Ivan has ignored that letter.” The transformational filter rejects the
vngrammatical construction prep-TH AT-clause and suggests that the words "the fact” be inserted
in the Transformational Structure of the embedded clause. Then, after all the Adjusiments have
teen applied. the system outputs the correct sentence: "Maria is bothered by the fact that Ivan has

innored that letter."

(b) I the transformations 0-NP-TO, and PASSIVE are to be performed on the kernels K= =

"Maria forced it" and K, = "lvan peeled potatoes”, the program has to combine the altered kernel

* : " . * " 111
., = "lt was forced by Maria" with the altered kerncl K, = "lvan tc peel potatoes.” The

0
transformational filter rejects the resulting sentence:; * "lvan to peel potatoes was forced by Maria”
os ungrammatical. Then, taking into account the semantic class of the main verb force. the filter
proposes o "raise” the first noun phrase of the embedded clause Zvan to the position of the first
noun phrase in the matrix clause it; the rest of the embedded clause moves to the end of the matrix

clause. Now the resulting sentence is correct: "[van was forced by Maria to peel potatoes.”

(c) If the embedded clause is very long, the transformational filter suggests applying the
F xtraposition rule, a rule which shifts the embedded clause to the end of the matrix clause leaving
the word "it" in its original position in the matrix clause. Thus, the sentence #1 from (21) can be
changed to "It bothers Maria that Ivan has ignored that letter."?

A family of ten transformations for generating embedded clauses was introduced in this section.
This family is completely defined by the values of three parameters COMP, NP, and INFL and,
therefore, can be considered as a single Connective Transformation whose surface manifestation has
several different forms depending on the values of these parameters.

24. In contrast with the usual transformations. which operate within a kernel sentence, one can analyze trunsformational
filters as interkernel transformations because they may operate across the kernels.

25. The noun "fact” is one of the so-called fuctive nouns which include also words like “idea”, “report”, etc.

26. We leave aside for now the guestion of defining "length”. Notice, that the Extraposition rule may also apply to short
embedded clauses: "1t bothers Maria that van left.”

e hliatied AU S i T v g TV 'ﬁ-.—‘--q

4

NP\ A RPN

Y . SOOI .

Other Transtomuitions

£7. Other Transformations

In this section we will add threc new transformations to the system of Commutative

Transformations. T, = Passive. T Dative Movement. and T, = There Insertion. 1he

1M
definitions of these transformations refer to the noun phrase positions in the Transformational

Structure: NPI. NPl 5 NPz‘ and to their exical and semantic values.

Definition;

Puassive 1$ a transformation that

(1) Permutes to the left the values of three noun phrases NP . NP, . and NP
I 1 1S 2

____________________________________)
) L
. NP, | Comeemeeene NP,

(b) Inserts the verb be afier the affix of the last auxiliary verb or, it AUX1 = do, substitutes
the verb be for the auxiliary do

(¢) Inserts the affiy en in front of the main verb

(<) Inserts the preposition by in front of NP7

Consider the kernel sentence K = "lvan gave Maria the bottle” with the Transformational
Structure (22):

((COMP comp) (NP, (lvan))
(1ENSE past) (INFL. infl) (AUX1 do) (NEG1 negl) (NEG2 neg?) (22)
(VERB give) (NP (Maria)) (NP, (the hottle)))

The Pussive transformation alters the kernel sentence K = "lvan gave Maria the bottle™ into the
sentence 'I'P(K) = "Maria was given the bottle by Ivan™ by changing the Transformational
Structure (22) into;

(COMP comp) (NP] (Maria))
(TENSE past) (INFL infl) (AUXIT be) (NEGT negly (NEG2 negp2) (DX}
(EN-PASS en) (VERB give) (NP (the hottle)) (BY-PASS by) (NP, (Ivan)))

27 In e dennition, when reterring o the words be, en, and by we mean elements (BF-PASS be). (IN-PASS en), and
(BY-PASS by)in the Transtormational Structure,

R T —— T T ——— TP —y— T T T T T

Kitte -26- Oiher Franstormations

In the case when there are only two noun phrases in the input hernel sentence. 1© permute two
NPs means the same as to interchange them. In this case our definition comes closer o the

comentional definition of Pussive.

The transformation Dative Movement changes the kernel sentence K = "van gave Maria the
bottle™ into the sentenece T | (K) = "hvan gave the bottle to Maria.™ A possibl > definition of Dative
Movement could refer to the syntactic constituents NP . and NP, in tie Transformational

Structure;

(a) Interchange the values oI'NPL5 and NP2
{b) Insert the word 1o in front of NP2

This definition of Dative Movement when applied to the kernel K gives the desired result T(K) =
"Ivan gave the bottle to Maria." Suppose. however, that the Passive transtormation is to be applied
to the kernel K prior to Dative Movement producing the Transformational Structure (23)
corresponding to the sentence T (K) = "Maria was given the bottle by Ivan." If Dative Movement
(as it is defined above) is now applied to 'I‘P(K). the Transformational Structure will be transformed

into:

((COMP comp) (NPl {Maria))
(TENSE past) (INFL infl) (AUX1 be) (NEG1 negl) (NEG2 neg2)
(EN-PASS en) (VERB give) (NPI_5 (Ivan)) (BY-PASS by) (DAT to) (NP2 (the bottle)))

The resulting sentence TDM(TP(K)) is unacceptable: * "Maria was given Ivan by to the bottle.”

In order to obtain the correct result we need a different definition of Dative Movement which refers
not to NP-positions in the Transformational Structure, but rather to semantic valucs of the noun
phrases which indicate the role that the noun phrase plays in the sentence: agent, goal, or theme.

In this paper several transformations which operate on the Transformational Structure of a kernel
phrase marker have been examined: the Question Transformation. Negation (full and contracted),
Passive, and the Connective Transformation. All of these transformations are defined in purely
syntactical terms: they move, insert, or delete syntactic constituents in the Transformational
Structure. So far, we have seen scmantic notions used only in the "decision-making" procedures.
For instance, the system needs the semantic class of the main verb in the matrix clause to determine
which of the Connective Transformations may be applied and what rule should combine the altered

kernel sentences.

PTGy U WY Wl G P N W detndamd diibdet ot b d 8l o e P LI U W ST Y o

PR O P DT Py

i Sn s

Al A A 4 A 8 A A BN el ol ol A &

Py

a_aia .

Katz -27- Qther Fransformations

;_'-l
3

g Dative Movement is the only transformation in our system that is defined in sermantical terms.
- i
’-I Definition; ;!
s)

L'ative Movement is a transformation that

(a) Interchanges the noun phrase which plays the role of goal with the noun phrase which

plays the role of theme
(b) Depending on the main verb, assigns one of two values { TO. FOR} to the element DAT

which will later be inserted in front of the goal noun phrase in the TS by a special adjustment
DAT Insertion

-

The result of this transformation is that the goal noun phrase will be in th: position previously

occupied by theme noun phrase and the theme NP will be in the position occupied by goal NP. R

g For instance. the Dative Movement transforms the Transformational Structure (22) of the kerncl g
sentence K = "lvan gave Maria the bottle" into: T

((COMP comp) (NP, (Ivan))

(TENSE past) (INFL infl) (AUX1 do) (NEGI negl) (NEG2 ncg2) (24) y

(VERB give) (NP, (the hottle)) (NP, (Maria))) N

Then the adjustment DAT Insertion inserts the element (DAT to) into the Transformational
N Structure (24) resulting in (25):

- ((COMP comp) (NP1 (Ivan))
a (TENSE past) (INFL infl) (AUX1 do) (NEG1 necgl) (NEG2 neg2) (25)
@ (VERB give) (NP, (the bottle)) (DAT to) (NP, (Maria)))

After all the other adjustments have been performed the system outputs the correct sentence "lvan

& gave the botle to Maria."?

Not only do we obtain the correct results by applying each of two transformations Pussive and

¢ Dative Movement to the 1S of the kernel sentence. but also, our definitions are so formulated that -

these transformations can be applied in any order. Dative Movement can be applicd to tie .
Transformational Structure altered by Passive and vice versa.

{

‘) , U

28 In the usual anabvsis (see tor istance, [Akmajian and Heny 1975)) Dative Movement transforms the sentence “lvan K

gave the botde o Maria™ into the sentence “Ivan gave Maria the botide,” R

SN 2

T e [l T S —

Other ranstormations

L et us. for example, apply Dative Moveinent to the TS in (23) altered by the Passive transformation.
The noun phrase "Maria”™ which plays the role of goal is interchanged with the noun phrase “the
botle™ which plays the role of theme. Then, the DAT Insertion adjustment inserts the preposition
to in front of the goal noun phrase "Matia” producing the TS (26):

((COMP comp) (NPl (the hottle)
(TENSE past) (INFL infl) (AUX1 be) (NEGT negl) (NEG2 neg2) (26)
(EN-PASS en) (VERB give) (DAT to0) (NPL5 (Maria)) (BY-PASS hy) (NP2 (Ivan)))

T TeyT

B N
. f.t. e . s N

The resulting sentence is TW('I’P(K)) = "The bottle was given to Maria by Ivan." The
I ansformational Structure (26) can also be obtained if the transformation Passive is applied to the
1S (24) (that is. after Dative Movement has been applied).

I'he following diagram (27) illustrates th > commutativity of these transformations:

Dative Movement

K = hangave Maria thebottle ~==smmmmmmemiemeees > 'I'DM(K) = Ivan gave the bottle to Maria

I I
| I
9 I |
|
I
!

Passive | Pussive 20N
|
I
{ Dative Movement 4
‘I'P(K) = Maria was given the bottle by Ivan - --------->0meememmenes > The bottle was given to Maria by Ivan

R The final transformation to be considered is There Insertion, defined below., "

. Definition;

5 X
' There Insertion is a transformation that),
;‘1 (a) Substitutes the word there® for the the NP1~position in the TS]
. 1

j 1
! "
i 29. More preciscly. the element (TH there) of the Transformational Structure, -

]

L T T Y T Y T T T Y O T

Other $ranstormations

(b) Moves the NPl-posilion in front of the affix associated with the lefunost occurrence of the

verb be in the Transformational Structure

As an example, consider the kemel sentence K = "A boy was cating a cake” with the

Transformational Structure (28):

((COMP comp) (NP, (a boy))
(YENSE past) (INFL. infl) (AUX1 be) (NEGI negl) (NEG2 neg2) (AFEFIXT ing) (28)
(VERB eat) (NP, (a cake)))

There is only one verb be in the TS above, therefore, AFFIX]1 is the requited ffix. After applying
the transformation There Insertion the Transformational Structure (28) will be transformed to (29);

((COMP comp) (TH there)
(TENSE past) (INFL infl) (AUXI be) (NEGI1 negl) (NEG2 neg2) (29)
(NPl (a boy)) (AFFIX1 ing) (VERB eat) (NP2 (a cake)))

‘The corresponding English output is "There was a boy eating a cake."”

Suppose, however, that Passive was applied to the Transformational Structure (28) causing another
verb be to be inscrted after AFFIX]:

((COMP comp) (NP, (a cake))
(CENSE past) (INFL infl) (AUX1 be) (NEGI ncgl) (NEG2 neg2) (AFFIX1 ing) (30)
(BE-PASS be) (EN-PASS en) (VERB eat) (BY-PASS by) (NP2 (a boy)))

Here the leftmost occurrence of be in the Structure (30) is the one referred to in the definition of the
transformation There Insertion and the position of the first noun phrasc is moved in front of its
affix:

(COMP comp) (TH there) (TENSE past) (INFL infl)
(AUXT be) (NEGI negl) (NEG2 neg2) (NPl (a cake)) (AFFIX1 ing) (R3]
(BE-PASS be) (EN-PASS en) (VERB eat) (BY-PASS by) (NP, (a boy)))

The ransformational Structure (31) produces the sentence: "There was a cake being caten by a

boy.

Consider now the question of the commutativity of the three transformations introduced in this

scetion. Tt follows from the definitions that There Insertion does not change the original disposition

|
1
1
-j

v
p]

""r"'c T,

LIS it o -
-.-,d C .

A YNDMUNIG
et

T,

e - 4

M AR 2 bt

RAAC RSO S i it iaie St S Sash sanb o lh Al Sl el St e Si M At et Setib vt esh st o Eestaacs S e aon ——w s - = -3~ w - w-3-ma

Katz -30- Qulier Franstormations

¢l the noun phrases NP, NP, .. and NP, in the Transformational Structure. Thercfore. since There
Insertion does not interfere with the action of Passive and Dative Movement. it does not prevent
tnesc transformations from permuting or interchanging the noun phrases. It is thus possible to
apply the Passive transformation and Dative Movement after There Insertion. On the other hand.,
Lative Movement and Passive may freely interchange the noun phrases in the 'I'S because it makes
no difference to the transformation There Insertion which of the noun phrases is located in the
l\fPl-posilion."’ There [nsertion, thercfore. can be applied after Passive and Dative Movement.
Since we have shown that There Insertion may precede or follow Pussive and Dative Movement, and
tiat the transformations Passive and Dative Movement are commutative, it follows that all three

tiansformations introduced in this section are commutative,

The application of There Insertion is restricted to sentences with an indefinite noun phrase in the
P.Pl-posilion, but the transformations Passive and Dative Movement interchange the noun phrases
i, the Transformational Structure. We, therefore, need a sentence with three indefinite noun
phrases to provide an appropriate example for showing the commutativity of the transformations.
In this case the result of application of There Insertion would be grammatical regardless of the order
of the wransformations. Suppose that K = "A man was reading a boy some intercsting stories." If
the three transformations are applied in the order: 1. There Insertion, 2. Passive, 3. Dutive

Movement, the result is:
1. After There Insertion: There was a man reading a boy some interesting stories.
2. After Passive: There was a boy being read some interesting storics by a man.
3. After Dative Movement. There were some interesting storics being read to a boy by a man.

The reverse order of the transformations: 1. Dative Movement, 2. Passive, 3. There Insertion

produces the following sentences:
1. After Dative Movement: A man was reading some interesting storics to a boy.
2. After Passive: Some interesting stories were being read to a boy by a man,

3. After There Insertion: There were some interesting stories being read to a boy by a man.*!

30. There Insertion mcrely moves the NP, -position in the Transformational Structure to the right.

31. We will not give here examples of all possible permutations of these transformations because the commutativity of
Dassive and Dative Movement has been already shown before.

9. N

.

NS 3 VRIS

. e
P v e s

-!‘_

.
-

IR \ VISV

».

L < a2 s

L

el alataala

L s A g st Lam e aeeas srun amh o B Shar S T T Ty

Katz -31- Other 1ranstormations

This section has introduced three additional transformations that refer 1o noun phrase positions and
their values.” The Passive transformation refers to the positions NP, NP, . and NP, permuting
their values. Dative Movement refers to the semantic values goal and theme and interchanges the
corresponding NP-positions. There Irsertion moves the NP -position in the Transformational
Structure.

Step Three of the Language Generation Procedure uses the constructed system of optional
commutative Transformations, the set o conditionally obligatory Transformational Filters. and the
sct of ordered obligatory Adjustments t "solve” the TASK provided by Step One and Step Two
ar d o produce the corresponding English text,

32 The system contains other transformations, such as the Relative transformation, Imperative and Tag Question, but
they will not be discussed here.

ML S e e 2

e

aaaaaas 2 R

e

D . SN

08 04 2t 2
L.

.

CA
' 3

Y

L.~ L S M kst g St St et Sl Y T W AW WSS Yy

hatz -32- Pronominalization

APPENDIX 1: Pronominalization

The program GEN which implements Step Three of the Language Generation Procedure "reads”
the input TASK supplied by Step One and Step Two of the LGP and gencrates the appropriate
word string. Each element of the TASK consists of a list of kernel phrise markers, a list of
transformation:s, and a syntactic separator. There is a one-to-onc correspondence between cach
TASK clement and each English sentence in the output. Every noun phirase in a generated
sentence derives its lexical value from one of the prepositionless noun frames, NF# NFE“ or
NF*™ of the Semantic Frame Structure. Transformations may interchange the values of noun
phrascs, but the actual word string i: never altered: it can only be transferred into another
INP-position in the Transformational Stiucture. Therefore. if different phrase markers of the TASK
refer to the same noun frame, cach instince of the corresponding noun phrase would have the same

lexical value.

This repetition is awkward and in order to make the text more fluent, the system requires a
pronominalization procedure which substitutes the repeated noun phrase with an appropriate
pronoun. The choice of the pronoun is determined by two parameters, the number and gender of
the corresponding noun phrase. The values of these two parameters can be computed from the
number and gender of the nouns which are heads of the noun phrases and the conjunctions that

connect them. ™

"The pronominalization procedure is activated every time the system "reads™ the next element of the
TASK and generates the corresponding English sentence. In order to decide which noun phrase
should be pronominalized, two subsequent sentences, referred to by the names current and

previous, are examined.

Definitions

Current-NP-list is a list of all noun phrases in the last generated (current) sentence.
Previous-NP-list is a list of noun phrases in the previous scntence.

Previous-pronouns-list (PPL) is a list of pronouns corresponding to cach clement of the previous-N P-list*

33. In this paper we will not describe the rules that the system uses o calculate the number and gender of a given noun
phrase. For instance, the number of the noun phrase "lvan and Maria™ is "plural”, the gender is "indifTerent.” Or, in the
cine of another noun phrase, "the man with a red tie”, the number is "singular”, the gender is "masculine”. Similar rules
can be found in [Katz 1978}

34, All the pronouns contained in the previous-pronouns-list are in the nominative case. But afier the decision to

pronominalize a noun phrase has becn made, the appropriate lexical form of a pronoun (nominitive, objective, or
pussessive) is chosen depending on the case of the corresponding noun phrase.

L adidC ot ouan avae 4 |

e
-

S
&

Katz -33- Pronominalization

Supposc, for example, that the following two scntences were generated by the system:
“Maria suspects that Tania is writing a letter to Ivan. Tania loves lvan.” (32)
in this example we have:

current-NP-list = ((Tania) (lvan))
previous-NP-list = ((Maria) (Tania) (a letter) (Ivan))
previous-pronouns-list = ((she) (she) (it) (he))

livery noun phrase in the current-NP-list which is also present in the previous-NP-list is a possible
candidate for pronominalization. But the decision to pronominalize each noun phrase is made only
fter comparing the pronoun that corresponds to the noun phrase under consideration with all the
uther elements of the PPL.

Pronominalization Rule: A repetitive noun phrase in the current scnience is replaced by its
pronoun only if the pronoun is unique in the previous-pronouns-list (that is, no other noun
phrases in the previous sentence has the same pronoun).

in the example (32) the program will not substitute the pronoun "she" for the noun phrase "Tania"
becausc this pronoun is not unique in the PPL. The Pronominalization Rule helps the system avoid
ambiguity that arises when this substitution is made; "Maria suspects that Tania is writing a letter to
Ivan. She loves Ivan.”

On the other hand, since there is only one occurrence of "he" in the PPL, the noun phrase "[van"
can be pronominalized, resulting in: "Maria suspects that Tania is writing a letter to Ivan. Tania
loves him,"

The Pronominalization Rule, however, is a necessary but not a sufficient condition for the
pronominalization procedure. In some cases complementary heuristic rules must be employed in
order to make the final decision.

35. 1t should be noted that more than one pronoun is possible in a sentence as long as the Pronominulization Rule is not
violated. The example is; "Many people suspect that Tania is writing a leter 1o Ivan. She loves him.”

A SO0 M 4

TN o) radrRany L
.‘l.-.,..l'- '.,'.A‘. ., -‘ . -

I

L gt A o ol A o4
e

PR SRR
P R T

Lathl Zeeh anall e ottt o Nl it St g - A B B S B M U A e 2 S 4 S I et Al 2Bt oAt 4o s Bats iett Sau Bnds Basl Sk Bmn g S s iy 4 A0t dox

Katz -34- I he Parser

APPENDIX 2: The Parser

This section describes the parser, a program that processes kernel sentences and builds the
corresponding Semantic Frame Structu:es using the three types of templates defined in Section 1 of
this paper:

noun-template (NT):(prep' dx’ adj‘ noun)
verb-template (VT) = (tense au:l auxZ aux3 verb) (34)
adverb-template (AT) = (mod adverb)

Izach word in the kernel sentence is always associated with a unique past of speech.” and. therefore,
with a unique position inside one of the templates NT, VT, or AT. We will assume that a kernel
sentence can be represented by the foll.wing sequence of frames:’

NFinitiaI NF‘egem VF NFgoal NFlheme NFﬁnul (35)

Each constituent in (35) can be obtained by applying the two operations Concatenation (CONC)
«nd Conjunction (CONJ)® (o the templates NT, VT, or AT in (34). All constituents are optional:
for example, the presence of the frames NF®' and NF™™ depends on the type of main verb in
the kernel sentence (transitive, intransitive, or double-transitive).

The parser analyses every word in the input kerncl sentence, scanning it from left to right and
mapping the appropriate pieces of the word string onto the corresponding templates. The parser
then decides which of the templates should be concatenated or conjoined in order to form the
necessary noun-frame, verb-frame, or adverb-frame. Because each word in the sentence is
associated with a unique template, the parser starts to create the appropriate type of template
("opens” the template) after examining the very first word in the sentence. The template must be
filled out from left to right. If any element in the template is left unspecificd, the parser inserts nil
as the value of this element. When all the elcments of the template are filled out, the parser
"closes” the template. Then, depending on the next word and its position in the sentence, the
parscr has two choices:

36. The question of lexical ambiguity, that is the case when one word can serve as various parts of speech, is not discussed
in this paper.

37. Forsimplicity, the adverb frames AFMiid AFmedial anq AFfnal yre not shown here.
38. Thesc operations are defined in Section 1.

b e L WO N S WA S | h o - - W —y e

PRV N

At ata MR 0 e

i
;i

i e a2 2 0L

lkatz -35- The Parser

(a) it either continues the construction of the frame. starting to create another instance of a
template of the same type, or
(b) it "closes” the current frame and begins to fill out the elements of another template.

thereby starting a new frame,

Here is an example to clarify the procedure. Suppose that the parser takes the following sentence as

input:
"In the evening a young tall man with blue eyes gave Maria a beautiful book and a rose.” (36)

“riggered by the preposition "in". the parser begins the construction of the noun-frame NF™# by
tilling out the noun-template as follows. ((prep in) (det the) (adj nil) (noun evening)). The next
word in the sentence is the determiner "a", which indicates the absence of a preposition in the next
noun-template, and, therefore, suggests that the frame (NF™ ((prep in) (det the) (adj nil)
(noun evening))) should be closed and that the construction of a new prepositionless noun-frame
NF®™ should begin. This frame consists of the concatenation of two noun-templates:

(NF*®* ((prep nil) (det a) (adj (young tall)) (noun man)
(prep with) (det nil) (1dj blue) (noun eyes)))

There is no auxiliary verbs in the sentence (36), and hence the parser builds from the verb "gave"”
the following verb-frame (VF ((lense past) (auxl nil) (aux2 nil) (aux3 nil) (verb give))) with
the unspecified auxiliary elements. Then, the word "Maria” forms another noun-frame (NFd
((prep niD) (det nil) (adj nil) (noun Maria))). Finally, the parser uses the operation Conjunction
to construct the last prepositionless noun-frame NF™™ from two noun-templates:

(NF™™ ((prep nil) (det a) (adj beautiful) (noun hook) (conj and)
(prep nil) (det a) (adj nil) (noun rose)))

The Semantic Frame Structure (37) below is the output of the parser after processing the

sentence (36):

e .__" A

2 e

A e

L]

4 n_.;_jl‘ PPV

2 -A_A_‘L‘A P Y

P Tt

ke

LT

R S w ey o . R T T TR TTY TTWITO% T T wm e T v w ow

tuatz -36- | he Parser

((NF"™ ((prep in) (det the) (adj nil) (noun evening)))

(NF™™ ((prep nil) (det a) (adj (young tall)) (noun man)
(prep with) (det nil) (adj blue) (noun eyes)))

(VF ((tense past) (aux1 nil) (aux2 nil) (aux3 nil) (verb give))) (37
(NFE ((prep nil) (det nil) (adj nil) (noun Maria)))

(NF™™ ((prep nil) (det a) (adj beautiful) (noun book) (conj and)
(prep nil) (det a) (adi nil) (noun rose))))

l.et us consider now the problem of closure that arises in two different contexts in the parsing
1 recess: the closure of a template and the closure of a frame.

A template is closed after a certain word if:

(a) The next word belongs to a template of another type.
(b) The next word belongs to the same type of template, but corresponds to a template
clement located to the I2ft of the template element filled last.®

Suppose now that a template has just been closed. The closure of a template implies the closure of

a frame if:

(a) The next word belongs to a template of another type. (The parser will then start to create
a frame of the new type).

(b) The next word is an element of a noun-template™ but it is not a preposition. (The parser
starts to construct a new prepositionless noun-frame).

If these conditions are not satisfied, the parser continues the construction of the corresponding
frame using, depending on the next word, one of the operations Concatenation or Conjunction.
The rules above allow the parser to open and close all the frames in the kernel phrase marker (35),
except the last one, NF™ The system does not have a syntactic rule which can determine, when
the prepositionless noun-frame NF™™ ends and NF™ begins. What, for example, should
happen in the sentence: “Ivan saw Maria with the binoculars”? One possible rcading of this

39. Remember that a template must be filled out from left to right.
40. We assume here that the previous template was also a noun-template; otherwise, the condition a. holds.

WPy 4

[PP WL

N WIS

bl ook I

LTy

Katz -37 - I'he Parser

sentence. where the parser closes the fiame NF™™ and opens NF™'? as soon as the preposition
with has been encountered, is represented below in the Semantic Frame Structure (38). 1t suggests
that Ivan was watching Maria through bis binoculars:

((NF*®=" ((prep nil) (det nil) (adj nil) (noun Ivan)))

(VF ((tense past) (aux1 nil) (aux2 nil) (aux3 nil) (verb see)))
(38)

(NF™™ ((prep nil) (det nil) (adj nil) (noun Maria)))
(NF™ ((prep with) (det the) (adj nil) (noun binoculars))))

Another reading of the sentence "Ivan saw Maria with the binoculars™ is represented by the
semantic Frame Structure (39). In dhis case the parser uses the operation Concatenation o
continue the construction of the nour-frame NF™™ after finding the preposition with. This

reading suggests that Maria had the binoculars at the time when Ivan saw her:
((NF®" ((prep nil) (det nil) (adj nil) (noun lvan)))
(VF ((tense past) (auxl nil) (aux2 nil) (aux3 nil) (verb sce))) (39)

(NF™™ ¢ ((prep nil) (det nil) (adj nil) (noun Maria)
(prep with) (det the) (adj nil) (noun binoculars))))

The problem of attaching the last prepositional phrase (PP™! Attachment) requires the use of
semantic/syntactic interaction for its resolution [Marcus 1979] and will not be discussed here.*

The parser described here is restricted to processing the kernel sentences of the gencral form (35).
However, more complicated sentences with several clauses can also be analyzed by the parser if a
mechanism that splits the sentence into kernels is provided. As an example, consider the sentences
with embedded clauses generated by the Language Generation Procedure with the help of the
Connective Transformations (see Table 1 in Section 6). The use of simple heuristic procedures (for
example, counting the number of verbs and noun phrases. or scarching for certain values of the
complementizers COMP and INFL) appears to be sufficient for reconstructing the kernels (matrix
clause and embedded clause) which form every complex sentence in Table 1. For instance, the

41. At this point. the parser makes the decision based on a list of prepositions which "usually”™ begin a new noun-frame
(1.c. through).

-,]

A SOROEIY

tonadhe e z b

Y

P \d

A aaa i i L p ey

.Tirrr. (s e el e AL As ae

TN T T e

katz -38 - the Parser

sentence "Ivan claims 1o have written that letter” consists of two clauses: "Ivaa claims<it™ and "lvan
has written that letter”. which have been combined by the transformation 0-0-10. The possibility
to reconstruct the kernels allows the parser to process any sentence generated by the Connective

F'ransformations.

Suppose that the input to the parser consists of several connected sentences o coherent tevt). and
that a pronominwization procedure had been employed by the writer in order 10 make the tex
more fluent. 1f this procedure had been accomplished obeying the Pronominclization Rule ~tated in
Appendix 1. the parser can easily resulve the anaphor. i.c. testore the noun phrases which were

replaced by the pronouns,

This parser has been used as a front end for Winston's learning systemy [Winston 1980]. 1t translates
English descriptions of situations into descriptions in the extensible-relation representation. This
representation was suggested by Winston and is implemented in his learning system using a version
of Frame Representation Language [Roberts and Goldstein 1977]. In FRL.. an agent-uct-theme
combination is expressed as a frame. a slot in the frame. and a value in the slot. In the
extensible-relation representation, a supplementary description node for an agent-act-theme

combination is expressed as a comment frame attached to the frame-slot-value combination.
Suppose, for example, that the following English text is the input to the parser:

in the beginning of the story Duncan was a king. Macbeth was a happy
noble. He married Lady-Macbeth. She was a grecdy and ambitious
woman, She wanted Macbeth to be king. He also desired to be the king.
Lady-Macbeth persuaded him to murder Duncan. Soon Lady-Macbeth
decided to kill herself. Macduff was a loyal noble. He became angry.
Macbeth’s murder of Duncan caused him to kill Macbeth,

Below follow the frames which were generated after parsing the input text. Here, AKO stands for
A-KIND-OF. and HP -- for HAS-PROPERTY relations.

(DUNCAN (ako (KING)))

(MACBETH (ako (NOBLE) (KING (ako-1)))
(hp (HAPPY))
(marry (LADY-MACBETH))
(desire (ako-1))
(murder (DUNCAN (murder-1))))

T

I

(LADY-MACBETH

(MACDUFF

(AKO-1

(MURDIR-1

(KILL-1

(KILL-2

(ako (WOMAN))

(hp (GREEDY) (AMBIT'IOUS))
(want (ako-1))

(persuade (murder-1))

(kill (LADY-MACBETH (kill-1)))
(decide (kill-1)))

(ako (NOBLE))
(hp (LOYAL) (ANGRY))
(kill (MACBETH (kill-2))))

(frame (MACBETH))
(slot (AKQ))
(value (KING)))

(frame (MACBETH))
(slot (MURDER))
(value (DUNCAN))
(cause (KILL-2))

(frame (LADY-MACBETH))
(slot (KIL.1))
(value (LADY-MACBETH)))

(frame (MACDUFF))
(slot (KILL))
(valuc (MACBETH)))

D S T T T T T U

Ihe Parser

P WG R

- AP U SITUI T RS

P I

8- SPTSIIY 4 VS

R T ———— T ———

References

ACKNOWLEDGMENTS

I am deeply indebted to Beth Levin and Mitch Marcus for numerous disct ssions about this work)
and friendly help. T also wish o thank Bob Berwick, Mike Brady. June Grimshaw. Bill Martin.
Dave McDonald, Candy Sidner. and Patrick Winston who read the draft « £ the paper and made

many valuable suggestions,

9
-
i
1
!

REFERENCES
Aknmajian, A, and Heny, F. An Introduction to the Principles of T'ransformational Syntax, MYT
Pross, 1975.
Chowsky. N., A Thecry of Syntactic Structures, Mouton & Co.. 1957.
Kats. B.. 4 Verse-Writing Program, Avtiomatika i Telemekhanika 2, 151-156, 1978.

Lasnik, H., Remarks on Co-reference, Linguistic Analysis 2, 1-22, 1976.

Narcus, M. P, A Theory of Syntactic Recognition for Natural Language, MI'T Press, 1979,

McDonald, D. D.. Natural Language Production as a Process of Decision-making Under é

Constraints, MI'T PhD Thesis, 1980.

Minsky., M., A Framework for Representing Knowledge, in P, H. Winston (ed.), The Psychology of

Computer Vision, McGrow-Hill, 1975, g

Reinhart. T.. The Syntactic Domain of Anaphora, MIT PhD Thesis, 1976.]
>

Roberts, R. B. and Goldstein, I. P., The FFRI. Reference Manual, MIT Artificial Intelligence 1

Laboratory Memo 409, 1977.)
!

Sidner, C. L., Towards a Computational Theory of Definite Anaphora Comprehension in Fnglish

Discourse, MIT Artificial Intelligence Laboratory Technical Report 537, 1979.

Winston, P. H.. Learning and Reusoning by Analogy, Communications of the ACM 23(12), Y

6%9-703, 1980.

S S S P P ']‘

. 4 SRS _§ ORI, iR |

